23 research outputs found

    Detection of ICMPv6-based DDoS attacks using anomaly based intrusion detection system: A comprehensive review

    Get PDF
    Security network systems have been an increasingly important discipline since the implementation of preliminary stages of Internet Protocol version 6 (IPv6) for exploiting by attackers. IPv6 has an improved protocol in terms of security as it brought new functionalities, procedures, i.e., Internet Control Message Protocol version 6 (ICMPv6). The ICMPv6 protocol is considered to be very important and represents the backbone of the IPv6, which is also responsible to send and receive messages in IPv6. However, IPv6 Inherited many attacks from the previous internet protocol version 4 (IPv4) such as distributed denial of service (DDoS) attacks. DDoS is a thorny problem on the internet, being one of the most prominent attacks affecting a network result in tremendous economic damage to individuals as well as organizations. In this paper, an exhaustive evaluation and analysis are conducted anomaly detection DDoS attacks against ICMPv6 messages, in addition, explained anomaly detection types to ICMPv6 DDoS flooding attacks in IPv6 networks. Proposed using feature selection technique based on bio-inspired algorithms for selecting an optimal solution which selects subset to have a positive impact of the detection accuracy ICMPv6 DDoS attack. The review outlines the features and protection constraints of IPv6 intrusion detection systems focusing mainly on DDoS attacks

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm

    No full text
    The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and β-Hill Climbing optimizer called FPAβ-hc. The performance of the FPAβ-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAβ-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods

    Eeg-Based Person Identification Using Multi-Levelwavelet Decomposition With Multi-Objective Flower Pollination Algorithm

    Get PDF
    Recently, several studies showed that the brain electrical activity or electroencephalogram (EEG) signals provide unique features that can be considered as user identification techniques. But, it is a challenging task where there are three important things must be addressed carefully in any EEG-based person identification. First, one of the significant challenges concerning is a signal acquisition, which is performed by placing several electrodes on a person’s head. However, it is not necessary to put all these electrodes on a persons’ head. Therefore, the most relevant ones for person identification can be identified and then use a smaller number of electrodes. Second, the EEG signals must be processed to obtain efficient EEG features because there are several noises can corrupt the original EEG signal during the recording time. Third, select efficient features that can be extracted from the EEG signal for achieving the highest accuracy rate. For addressing these points, a novel person identification method that is using EEG with multi-level wavelet decomposition and multi-objective flower pollination algorithm is proposed in this thesis. The proposed method is tested using two standard EEG datasets, namely, Kiern’s and Motor Movement/Imagery

    Lack of Habituation in Migraine Patients Based on High-Density EEG Analysis Using the Steady State of Visual Evoked Potential

    No full text
    Migraine is a periodic disorder in which a patient experiences changes in the morphological and functional brain, leading to the abnormal processing of repeated external stimuli in the inter-ictal phase, known as the habituation deficit. This is a significant feature clinically of migraine in both two types with aura or without aura and plays an essential role in studying pathophysiological differences between these two groups. Several studies indicated that the reason for migraine aura is cortical spreading depression (CSD) but did not clarify its impact on migraine without aura and lack of habituation. In this study, 22 migraine patients (MWA, N = 13), (MWoA, N = 9), and healthy controls (HC, N = 19) were the participants. Participants were exposed to the steady state of visual evoked potentials also known as (SSVEP), which are the signals for a natural response to the visual motivation at four Hz or six Hz for 2 s followed by the inter-stimulus interval that varies between 1 and 1.5 s. The order of the temporal frequencies was randomized, and each temporal frequency was shown 100 times. We recorded from 128 customized electrode locations using high-density electroencephalography (HD-EEG) and measured amplitude and habituation for the N1–P1 and P1–N2 from the first to the sixth blocks of 100 sweep features in patients and healthy controls. Using the entropy, a decrease in amplitude and SSVEP N1-P1 habituation between the first and the sixth block appeared in both MWA and MWoA (p = 0.0001, Slope = −0.4643), (p = 0.065, Slope = 0.1483), respectively, compared to HC. For SSVEP P1–N2 between the first and sixth block, it is varied in both MWA (p = 0.0029, Slope = −0.3597) and MWoA (p = 0.027, Slope = 0.2010) compared to HC. Therefore, migraine patients appear amplitude decrease and habituation deficit but with different rates between MWA, and MWoA compared to HCs. Our findings suggest this disparity between MWoA and MWA in the lack of habituation and amplitude decrease in the inter-ictal phase has a close relationship with CSD. In light of the fact that CSD manifests during the inter-ictal phase of migraine with aura, which is when migraine seizures are most likely to occur, multiple researchers have lately reached this conclusion. This investigation led us to the conclusion that CSD during the inter-ictal phase and migraine without aura are associated. In other words, even if previous research has not demonstrated it, CSD is the main contributor to both types of migraine (those with and without aura)

    Automatic Malignant and Benign Skin Cancer Classification Using a Hybrid Deep Learning Approach

    No full text
    Skin cancer is one of the major types of cancer with an increasing incidence in recent decades. The source of skin cancer arises in various dermatologic disorders. Skin cancer is classified into various types based on texture, color, morphological features, and structure. The conventional approach for skin cancer identification needs time and money for the predicted results. Currently, medical science is utilizing various tools based on digital technology for the classification of skin cancer. The machine learning-based classification approach is the robust and dominant approach for automatic methods of classifying skin cancer. The various existing and proposed methods of deep neural network, support vector machine (SVM), neural network (NN), random forest (RF), and K-nearest neighbor are used for malignant and benign skin cancer identification. In this study, a method was proposed based on the stacking of classifiers with three folds towards the classification of melanoma and benign skin cancers. The system was trained with 1000 skin images with the categories of melanoma and benign. The training and testing were performed using 70 and 30 percent of the overall data set, respectively. The primary feature extraction was conducted using the Resnet50, Xception, and VGG16 methods. The accuracy, F1 scores, AUC, and sensitivity metrics were used for the overall performance evaluation. In the proposed Stacked CV method, the system was trained in three levels by deep learning, SVM, RF, NN, KNN, and logistic regression methods. The proposed method for Xception techniques of feature extraction achieved 90.9% accuracy and was stronger compared to ResNet50 and VGG 16 methods. The improvement and optimization of the proposed method with a large training dataset could provide a reliable and robust skin cancer classification system

    A Conceptual and Systematics for Intelligent Power Management System-Based Cloud Computing: Prospects, and Challenges

    No full text
    This review describes a cloud-based intelligent power management system that uses analytics as a control signal and processes balance achievement pointer, and describes operator acknowledgments that must be shared quickly, accurately, and safely. The current study aims to introduce a conceptual and systematic structure with three main components: demand power (direct current (DC)-device), power mix between renewable energy (RE) and other power sources, and a cloud-based power optimization intelligent system. These methods and techniques monitor demand power (DC-device), load, and power mix between RE and other power sources. Cloud-based power optimization intelligent systems lead to an optimal power distribution solution that reduces power consumption or costs. Data has been collected from reliable sources such as Science Direct, IEEE Xplore, Scopus, Web of Science, Google Scholar, and PubMed. The overall findings of these studies are visually explained in the proposed conceptual framework through the literature that are considered to be cloud computing based on storing and running the intelligent systems of power management and mixing
    corecore